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Thermohaline instabilities produced by horizontal gradients of temperature and 
salinity in a saturated homogeneous isotropic infinite porous medium are studied 
using lincar stability analysis. In the basic state horizontal gradients of temperature 
and salinity are taken to be mutually compensating, so that the basic-state fluid 
density does not vary horizontally. It is found that under these conditions the fluid 
is always unstable. In a porous medium, assuming the solid matrix to be impervious 
to dissolved salts, the effective advection rates of heat and dissolved salts are 
different. Because of this difference any disturbance involving a horizontal 
component of displacement creates net horizontal density gradients, and thus 
destabilizes the predominantly hydrostatic force balance. When the vertical Rayleigh 
number is positive, the typical velocity field consists of almost vertical layers of fluid 
sliding past each other in opposite directions (salt fingers). When the vertical 
Rayleigh number is negative the fluid layers are almost horizontal, similar to the 
interleaving observed in Newtonian fluids. Resulting perturbation fluxes of heat and 
salt always tend to reduce the basic-state concentration gradients, and typically also 
the gravitational potential energy of the fluid. We also make some tentative 
estimates regarding properties of these instabilities at  the fully developed state. It 
seems that thermohaline fine structures, similar to oceanic observations, are also 
possible in porous media. 

1. Introduction 
Thermohaline instabilities in porous media play important roles in many 

geologically significant phenomena. For example Phillips (1991, 55.4) proposed ‘ salt 
fingering ’ beneath hypersaline lagoons as a possible mechanism of dolomitization of 
limestones. Griffiths (1981) suggested the presence of a ‘diffusive interface’ at the 
bottom of the Earth’s crust to explain the separation of hot brine from convecting 
ground water in the Wairakei geothermal system. Bischoff & Rosenbauer (1989) 
postulated the presence of deep-seated ‘ diffusive interfaces ’ within the oceanic crust 
to explain salinity variations in vent fluids of seafloor geothermal systems. Lindblom 
(1986) proposed that mixing prompted by double-diffusive instabilities resulted in 
deposition of sulphides and fluorites at Laisvall, Sweden. Evans & Nunn (1989) found 
that thermohaline effects were crucial in explaining inferred groundwater flow 
patterns near salt domes. Similar physical mechanisms are also potentially important 
in groundwater contamination, where the chemically laden water will play the role 
of salty water. Gradients of fluid temperature and salinity are hardly ever perfectly 
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vertical in a natural situation. In some situations, e.g. near a salt dome (Bennett & 
Hanor 1987): the horizontal components of property gradients are just as strong as 
vertical gradients. In this paper we examine consequences of the presence of these 
horizontal gradients on characteristics of thermohaline instabilities in a saturated 
homogeneous isotropic infinite porous medium. 

The first theoretical analysis of double-diffusive instability in porous media was 
apparently done by Kield (1968). He considered the case of purely vertical property 
gradients. To our knowledge nobody has looked a t  the effect of horizontal gradients 
on double-diffusive instabilities in porous media, although a similar analysis has been 
done for a Newtonian fluid. Thorpe, Hutt  & Soulsby (1969) reported an approximate 
analysis of the linear stability boundary for horizontal and vertical fluid layers of 
finite thickness. The accuracy of their solution increased asymptotically with 
increase in the magnitudes of horizontal and vertical Rayleigh numbers. They 
concluded that the presence of horizontal gradients was strongly destabilizing, 
though a large negative vertical Rayleigh number could make the situation stable. 
Subsequently Hart  (197 1 )  reported an accurate numerical solution of the stability 
boundary for a vertical column of salt-stratified fluid heated from a sidewall. Paliwal 
& Chen (1980) reported a similar numerical analysis for fluid layers of varying 
inclinations. These analyses concentrated on accurately incorporating laboratory 
boundary conditions in the calculation of the stability boundary. By contrast Holyer 
(1983) assumed the depth of the fluid layer to be infinite and obtained detailed results 
regarding the behaviour of the most unstable modes. In  the present paper we take 
the second approach. 

The first laboratory experiments on double-diffusive convection in porous media 
were reported by Griffiths (1981). He showed that if a salt-stratified saturated porous 
layer is heated from below, it forms sharp ‘diffusive interfaces’ similar to those in a 
Newtonian fluid. Imhoff & Green (1988) showed the existence of ‘salt fingers’ in a 
porous medium. Murray & Chen (1989) experimentally studied the onset of 
thermohaline convection in porous media. In  all these studies the thermohaline 
gradients were maintained vertical. No porous media experiments seem to have been 
done with horizontal property variations but experiments done in a Newtonian fluid 
may provide same guidance. Flow visualization studies of Thorpe et al. (1969) clearly 
showed the onset and growth of horizontal interleaving. Similar experimental 
observations were made by Wirtz, Briggs & Chen (1972), Ruddick & Turner (1979), 
Holyer et al. (1987) and others. 

2. Linear stability analysis 
We consider a homogeneous saturated porous medium of infinite extent. We 

assume that a t  the initial state the fluid is quiescent. The isothermal and isohaline 
surfaces are assumed to be inclined and straight, with the restriction that horizontal 
gradients of temperature and salinity are mutually compensating such that the fluid 
density does not vary in the horizontal direction. This restriction is necessary since 
the presence of a net horizontal density gradient will not be dynamically consistent 
with the assumption of an initial state of rest. Interestingly, the higher thermal 
conductivity of salt compared to that of geological sediments do tend to produce 
compensating horizontal thermohaline gradients near a salt dome (Evans & Nunn 
1989). The assumption that isotherms and isohalines are straight is necessitated by 
the fact that at the initial state diffusive fluxes of heat and salt should be constant. 
The density may vary in the vertical direction. We find the (x, 2)-plane as the vertical 
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plane along which the horizontal gradients of temperature, and hence salinity, are 
the steepest. We show in Appendix A that the Squires theorem holds for this 
problem, hence disturbances confined to  the ( x ,  2)-plane are always more unstable 
than their three-dimensional counterparts. Therefore in the following discussion we 
will assume that all motion is two-dimensional. The z-axis is taken to be positive 
vertically upwards and the sense of the x-axis is chosen so that the basic-state 
horizontal salinity and temperature gradients are positive. 

For an infinite-medium problem the lengthscale is to be determined from 
properties of the medium. For problems of thermal and thermohaline instabilities the 
only relevant dimensional property of the saturated porous medium is its hydraulic 
conductivity K(  = k,g/v), where k ,  is the permeability of the medium, g is the 
acceleration due to gravity and v is the kinematic viscosity of the fluid. Apparently, 
the intrinsic lengthscale of the problem is 1* = k, /K,  where k, is the effective thermal 
diffusivity of the saturated medium. Similarly the intrinsic timescale is t* = k,/K2. 
For a water-saturated porous medium of permeability one darcy 1* x 1.4 cm and 
t* z 23 min. We will be treating the porous medium as a continuum. For this to be 
valid it is necessary that the lengthscale of the problem be much larger than the 
typical grain size. Typically k, N 10-2$S2 (Phillips 1991; §2.7), where $ is the 
porosity of the medium and S is the r.m.s. grain size. When water is the interstitial 
fluid this implies that  6 4 1* only if k, 4 100 darcy. This restriction will exclude very 
high-permeability media like gravel, karst limestone and clean sand from the domain 
of applicability of the present analysis. For media with permeability of 1 darcy or 
higher, lengthscales of disturbances with positive growth rates are at least one order 
of magnitude larger than I * .  This relaxes the above restriction quite a bit. I n  the 
following discussion all length and time variables are scaled by 1* and t* respectively. 
Mathematically the basic state is described as 

TO(x,z) = T,+TO,x+qz, 1 

so that a and p both are positive. 
To obtain the disturbance equations we add dynamically permissible perturbations 

of physical quantities to  the basic state. We assume perturbations to be small 
compared to corresponding basic-state quantities and hence neglect products of 
perturbation quantities. The appropriate momentum equation for a single-phase 
fluid in a saturated, homogeneous and isotropic porous medium is the Darcy’s law. 
Combining Darcy’s law with the Boussinesq approximation (incompressibility 
condition) and the linearized equation of state one obtains 

Primes denote disturbance quantities. The stream function is defined such that 

ayf ayf 
u’(x, 2,  t )  = -, w’(x, z ,  t )  = --, aZ ax 
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where (u', v') is the transport velocity (not the pore velocity) of the fluid. Neglecting 
dissipative, chemical or other sources of heat generation one obtains the linearized 
equation of heat conservation : 

-+- -p,--q = V 2 T ,  
aT' at r Yay a Z  aY ax ) (3) 

where r is the ratio of volumetric heat capacity of the saturated matrix to that of 
the fluid. Assuming neither any loss of salt by precipitation or crystallization nor any 
gain by dissolution of the solid matrix, one obtains the linearized salt balance 
eauation : 

7 is the ratio of the effective molecular diffusivity of salt in the fluid (taking into 
account the effect of fluid path tortuosity) to the effective (molecular) thermal 
diffusivity of the saturated matrix. The inverse of 7 is called Lewis number. Typically 
7 is of order lop2. Equations (2), (3) and (4) together constitute the final set of 
disturbance equations. Since the medium is infinite there are no formal boundary 
conditions, the only requirement is that disturbance quantities remain bounded 
everywhere. Typically r x 1, hence the advection rate of heat is x u. In  contrast, the 
porosity of the medium # < 1 ,  so that the advection rate of salt, u/#, is much larger 
than that of heat. This difference between advection rates of two components which 
affect the fluid density is primarily responsible for the instability described in this 
paper. This is similar to  but different from the double-diflwsive instability observed 
in Newtonian fluids. This mechanism of instability has been called double-advective 
instability (Phillips 1991) .  In  addition, the fact that  7 4 1 opens the door for the 
double-diffusive mechanism to destabilize the situation even more. Nevertheless 
double-advective effects are predominant. 

Equations (2), (3) and (4) can be reduced to a single equation as: 

( 5 )  
where 

The right-hand sides of the above expressions are in the dimensional form. R, and R, 
are the horizontal and vertical Rayleigh numbers respectively. Notice that when one 
uses a diffusive lengthscale the Rayleigh numbers increase with increase in kinematic 
viscosity of the pore fluid. W, and W, are weighted horizontal and vertical 
concentration gradients respectively. The parameters W, and WZ are unique to 
porous-media dynamics. I n  addition to the small-amplitude assumption we assume 
that the extent of the initial disturbance is limited in space, so that the Fourier 
transform of the disturbance with respect to  spatial variables exists. This permits us 
to  confine our attention to a single Fourier component of the disturbance a t  a time. 
Hence we assume solution of (5 )  of the form 

Y ( x , z , t )  = ~oexp[nt+i(xlcosB+zlsinB)]. (6) 
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FIGURE 1. Contour plots of growth rate 2 1 / r [ R Z + ( R ~ + R , 2 ) ~ ] .  (a) A case which would have been 
stable in the  absence of any horizontal gradient. The vertical gradients represented in ( b )  are 
unstable even in the absence of any horizontal gradients. The growth rate is scaled by  a n  
approximate expression of the peak growth rate (equation (26)), and the largest wavenumber with 
a non-negative growth rate (equation (10)) is used to  scale the  wavenumber. W, = 8 x 
R, = 10 *, r = lo-'. Contour levels are 0, 0.2, 0.4, 0.6 and 0.8. ' 

e (deg.1 0 (deg.1 

Substituting (6) in (5)  one can derive the following equation for the disturbance 
growth ratc: 

n2 + n[P( 1 + 7 )  -a (W, (COS 28+ 1) - W, sin 28)] 

+ [714 -$12(R, (cos 28+ 1) -R, sin 20)] = 0. (7)  

Using properties of quadratic equations it can be shown (Appendix B) that the real 
part of both roots (7) will be less than or equal to zero, i.e. the basic state will be 
stable only if both of the following conditions are satisfied: 

whcre k( = 1 cos 0) is the horizontal component of the disturbance wavenumber and 
,u = tan8. Equations (8) and (9) are both necessary and sufficient. It can be shown 
(Appendix C) that if (dpldz) < 0, then satisfaction of (8) implies satisfaction of (9). 
In the present paper we consider only the case of density decreasing with height, 
hence for us (8) is both a necessary and sufficient condition for stability. For given 
values of R,( + 0) and R, one can always choose ,u and k such that (8) is not satisfied. 
Hence, so long as R, + 0, there are always some scales and modes of disturbances to 
which the basic state is unstable. One obtains similar result in a Newtonian fluid 
(Holyer 1983). Note that when R,  = 0, the situation is stable if R, < 0. Obviously the 
prcsence of horizontal gradients is strongly destabilizing. It can be shown (Appendix 
C) that so long as dp/dz c 0, if the growth rate is complex its real part is necessarily 
negativc. A different statement of the above result is that 'overstability' is not 
possible in the present case. In a porous medium inertial acceleration of the 
interstitial fluid is negligible compared to the viscous drag. This rules out the 
possibility of growing oscillations. By contrast, in an infinite fluid oscillatory modes 
can be growing with time, though usually the fastest growing modes are not 
oscillatory (Holyer 1983). 

Examples of numerical solutions of (7)  are shown in figure 1. These are contour 
plots of constant disturbance growth rates. Notice that (7) predicts two growth rates, 
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and only positive values of the higher one have been plotted. Note that there exists 
well-defined peak growth rate, that the peak growth rate is of the same order as the 
highest growth rate a t  the non-diffusive limit ( I  = 0) and that the most unstable 
orientations (8)  for different wavenumber magnitudes are quite close. In  general the 
range of values of Z and 8 for positive growth rate increases with increase in values 
of W,, W,, R, and R,. 

From (8) it is clear that for any given angle, 8, of the wavenumber vector, the 
largest wavenumber with non-negative growth rate is given by 

l2 = $[R, (cos 28 + 1 )  -R, sin 281. 

The largest wavenumber with non-negative growth rate is obtained by setting 
al/a8 = 0 in the above equation. The corresponding mode of disturbance (denoted by 
subscript m),  satisfies the following relations : 

R, 
(RE + R:); ’ sin (28,) = - 

ation (10) may be interpreted as indicating that for a disturba ce to  be 
destabilizing, the Rayleigh number formed with the inverse of the disturbance 
wavenumber as the lengthscale should be of order one or larger. I n  a dimensional 
form the smallest lengthscale is given by 

For a water-saturated medium with k ,  = 1 darcy, T$ = 0.005, PS! = f 1 % per 10 m 
and PSO, = 0.5% per 10 m the smallest lengthscales (2~1;~) are about 160 cm (for 
PS! > 0) and 750 cm (for /IS: < 0). 

3. The non-diffusive limit 
For a disturbance of finite size, 1 = 0 implies that  1* = k,/C = 0, i.e. it corresponds 

to the non-diffusive limit. For a disturbance of the form of (6) the growth rate in this 
limit is 

n =  K-PW, 
1 +p2 

and it is independent of the disturbance lengthscale. (Note that though we are 
discussing the non-diffusive limit, for ease of comparison with other sections, we still 
use the diffusive lengthscale. The form of equations remain unchanged by changes in 
the lengthscale.) The largest growth rate (denoted by subscript 0) is given by 
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FIGURE 2. Displacement of a fluid parcel from point 1 to 2. This diagram also shows the 
orientation of the coordinate system. 

The most unstable orientation (O,, see (6)) of the wavenumber vector is given by 

w z  
( w " , + w p  

sin (20,) = - 

w, 
(w", + w$. cos (26,) = 

For a water-saturated medium with k, = 1 darcy, 4 = 0.15, PS: .= _+ 1 YO per 10 m 
and PS! = 0.5% per 10 m the timescales for disturbance growth rate (n i l )  are 
approximately 6 months (for PS; > 0) and 8 years (for PS: < 0). 

From (13) i t  is clear that in the non-diffusive limit disturbance growth rates are 
always real. Making use of the definition of the stream function one can recast (13) 
in the dimensional form 

where e, and ed are unit vectors pointing vertically upwards and in the direction of 
the displacement respectively. Equation (17) can provide a quantitative account of 
physical processes responses responsible for instability in the non-diffusive limit. Let 
the displacement of a parcel of fluid be A (figure 2). Let the basic-state temperature 
(salinity) of the fluid a t  the initial and final locations be and T,  (S ,  and S,) 
respectively. Obviously, T,--T, = (edVP)d and S,-S, = (ed.VSo)d. Let the tem- 
perature and salinity of the fluid parcel a t  the displaced position, after necessary 
adjustment, be 9 and s^ respectively. Conservation of salt requires that s^=S,. 
Similarly can be evaluated from heat balance equation per unit volume of the 
saturated matrix : 

[ ( I -$ )  (Pc),+4(Pc)rlT,+(Pc),(l-4) T,  = (1-4) ( P ~ ) s T , + r ( 1 - $ ~ ( P ~ ) s + 4 ( P c ) r l ~ ' .  

Which upon simplification yields : 

(T,-T)  - 4  = -(T,-T,) = -(e,.VTO)d, 4 
r r 
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FIGURE 3. Typical disturbance velocity field. Notice that  the direction of' fluid motion is 
perpendic-ular to the wavenumber vector. 

where f = I( 1 - $) (pc), + $ ( p ~ ) ~ ] / ( p c ) ~ .  Hence the buoyancy force acting per unit 
volume of the displaced fluid is gpo A(e,.V(PSO-#aTO/r)). Only the component of 
this force in the direction of the displacement determines the linear stability of the 
basic state. Equating the pore velocity of the fluid to nA, using Uarcy's law and the 
fact that the transport velocity of the fluid is $ times its pore velocity one obtains 
an alternative derivation of (17). 

Equations (15) and (16) imply that the direction of fluid motion corresponding to 
the most unstable mode are limited to the first and third quadrants (where So and 
T" are taken to increase to thc right, figure 3). This is similar to theoretical 
predictions (Holyer 1983) and experimental observations (Thorpe et al. 1969) in 
Newtonian fluids. If the horizontal component of the displacement of a fluid parcel 
is towards the hotter and saltier region ( i x .  towards the positive x-direction), 
then following arguments from the above paragraph one can show that, 
being substantially less saline but only slightly cooler, i t  will be lighter than the 
surrounding fluid. Hence the original displacement will be unstable only when 
its vertical component is upwards, explaining why most unstable displacements are 
confined to the first and third quadrants. Later it will be clear that, so long as 
(cte/p&'- 1) #/I' < 1, the same is true for the diffusive case. 

4. The most unstable mode for given gradients 
One can determine the most unstable growth rate and the corresponding mode of 

disturbance from (7)  by setting an/c?l = an/a8 = 0. The fact that  n is always real for 
unstable modes (so long as (dpldz) < 0) simplifies the algebra. The peak growth rate 
and the wavenumbcr magnitude are given by 

7[R,( cos 28, + 1) - R, sin 28,] [R, + R, tan 28,] 
2[( 1 + 7 )  (K, +R, tan 28,) - 2( W, + W, tan 28,)] ' 

n =  

2 -  [R, sin 28, -R,(cos 28, + l)] [ W, + W' tan 28,] 
'P - 2[(1+7) (R,+R, tan 2 8 , ) - 2 ( ~ , +  W, tan28,)l 

and the angle of the wavenumber vector is dctcrmincd from 
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where the subscript p corresponds to the peak growth rate and 

) (21) 
A ,  = W, + W, tan 28,, R, = I?, +R, tan 20,, 

M ,  = WXsin28,-~(cos28,+l), Np =lixsin28,-~(cos28,+l).  

4.1. A n  upproximate solution 
Analytic solutions of n,, I ,  and 8,’ in terms of basic-state property gradients 
(from the equation set (18)-(20)) are %pparentlx impossible to  derive. ANeverthel$ss 
it can be shown that R, = W,( 1 - 7 $ ) / [ 7 (  1 - $)] and R, = W,( 1 - r7$)/[7(  1 - r $ ) ] ,  
where r = aq/PSl,o and $ = $/r. Now, tan 20, -tan 28, = W,/ W, -R,/R, = (W,/ 
K)J(l+~)(r-l)/[(l-$)(l-r~d)]. Typirally r = 0 ( 1 ) ,  JGO(O.1) and7=O(10-2) .  
Hence assuming ( r -  1) $ < 1 and WJW, < O( 1) one obtains 

This implies that  the most unstable orientation of a disturbance wavenumber vector 
is almost independent of its magnitude. Numerical solution of ( 7 )  over realistic 
ranges of parameter values indicated that orientations of the most unstable 
disturbance mode OD, of the smallest scale disturbance 0, ((11) and (12)), and of the 
most unstable non-diffusive mode B0 ((15) and (16)) were always very close to  each 
other (figure 1). In addition, typically 8, is in between 8,) and 8,. Using this fact, (21) 
may be simplified as 

A ,  = 2W,~ec~(28,)(8,-8~) ( l + O ( $ ) ) ,  

B, = 2K,sec2(28,) (OP-On,) (1+0($)), ) (23) 

Mp = -2n0(l+O($2)), Np = -2Z;(l+O(42)). 

A convenient equation for 1, may be obtained by substituting (23) in ( 7 ) :  

From (10) and (14), neglecting terms of order $7 compared to  one, it can be shown 
that 

where r = ae/PSl,o. Now dp/dz < 0 implies R,(1 - r )  < 0 (assuming ( r -  1) $ < 1) and 
this fact can be used to prove that the factor within square brackets in (25) is always 
positive. Using (25)  it can be shown that B,/A,  (equation (20)) is always real and of 
order 1/(7$)$( B l ) ,  and so long as O(7/$)  < 1 , l i  is always positive. This fact and (18), 
(20) and (24) yield 

(26) np = $T[R, + (R; +R$] (1 + O ( $ ) ) ,  

Conditions for validity of (26)-(28) - i.e. a c / P S i  = O( 1) ; the ratio of 7 (the ratio of 
effective molecular diffusivity of salt to the thermal diffusivity of the matrix) and 
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porosity of q5 of the medium to be much smaller than unity, O(r /$ )  < 1 ; and the slope 
of isoconcentration lines not too steep (i.c. W,/ W, < O( 1)) ~ are satisfied in most 
practical situations. Notice that l,,/Z,,, = O($r); and (n , -n , ) /n ,  = O($) .  

The fact that usually 8, x Om % 8, (since l8,-8,l + 1 )  implies that the tradeoffs 
involved in determining the most unstable direction of fluid displacement are 
essentially the same in both the diffusive and the non-diffusive case (discussed 
earlier). By contrast the most unstable lengthscale is determined by diffusive effects. 
Diffusivity always decreases the difference between the temperature (salinity) of a 
displaced fluid parcel p(8) ,  and that of the surrounding fluid T,(S,). In particular, for 
small-scale disturbances (i.e. 1 > 1,) concentration perturbations get diffused away 
before buoyancy forces can displace the fluid by any significant distance. When 
r 6 1, though each of ct(q-F) and p(S,-s^) are decreased by diffusive effects, the 
decrease in a(&-@) is much larger than that in p(S,-8), so that for some 
disturbance lengthscales there is a net increase in the difference between these two 
concentration differences, which corresponds to a net increase in the destabilizing 
buoyancy force. Thus the most unstable wavenumber 1, owes its existence to double- 
diffusive effects. 

4.2. Salt fingering and interleaving 
From ( l l ) ,  (12) and (28) it is clear that when the vertical Rayleigh number R, is 
positive, the inclination of wavefronts (angle y in figure 3) typically varies between 
in and in. When R, = 0 the disturbance velocity field consists of strictly vertical 
layers of fluid sliding past each other. In a Newtonian fluid similar disturbances 
correspond to the onset of salt fingering (Holyer 1983). As the ratio R,/R, increases, 
the inclination of these layers from the vertical monotonically increases up to the 
maximum inclination of 45". When R, < 0 the inclination of wavefronts typically 
varies between 0 and in. When 0 < IR,/R,I 4 1 one obtains almost horizontal layers 
of fluid sliding past each other. Interleaving or 'tongues' of this form are also 
predicted in Newtonian fluids (Holyer 1983), and have been observed in the 
laboratory by Thorpe et al. (1969), Wirtz et al. (1972), Ruddick & Turner (1979) and 
Holyer et al. (1987). As ~R,/R,~ increases, the inclination of these layers from the 
horizontal monotonically increases up to  the maximum of 45". Holyer et al. (1987) 
found indirect evidence that in a Newtonian fluid the slope of interleaving intrusions 
does increase with increase in the strength of horizontal gradients. For the same 
value of IR,/R,I salt fingers are smaller in layer thickness (higher I , , )  and more 
vigorous (higher n,) than horizontal interleaving. 

4.3. Narrowness of the peak 
An estimate of the sharpness of variation in the growth rate (near the peak) with 
variation in the angle of the wavenumber vector may be obtained by examining the 
non-diffusive limit. Equations (13), (15) and (16) may be used to obtain the following 
alternative expression for the non-diffusive growth rate : 

n = W:); Lcos (20,)  + cos (2a ) l ,  

where a = 8-8,. Obviously the sharpness of the peak with respect to 8 is that of a 
sine wave with a period of K. This is similar to a Newtonian fluid (Holyer 1983). Flow 
visualization studies of Thorpe et al. (1969) suggest that sharpness of this order may 
be such that only modes with 8 z 8, can be observed beyond an initial period of 
growth. An estimate of the narrowness of the peak with respect to the wavenumber 
is obtained by solving (7)  for 8 = Om. From figure 4 it is clear that as 4 -0 the growth 
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FIQURE 4. Dependence of the disturbance growth rate on wavenumber and porosity (0 = 0,). 
T = 0.01, C Z ~  = PS: = 1.2 x For the present scaling, 
qualitative features of this graph do not change with changes in concentration gradients. Note that 
n = 0 a t  1 = 1, (equation (10)). 

21/[R,+(R:+R$]i 

C Z ~  = 5.7 x and PS: = -6.5 x 

rate is pretty much the same for all 1 < 1,. Obviously when q5 G 1 one may encounter 
a wide range of layer thicknesses. By contrast, in a Newtonian fluid the n us. 1 peak 
is sharp enough that variation in layer thickness is small (Holyer 1983; Thorpe et al. 
1969). 

5. Fluxes of heat and salt 
From (3), (4) and (6) the real parts of the stream function, temperature and salinity 

perturbations are found to be 

!P’(x,z, t)  = @,entcos(kx+mz),  (29)  

mPx - k q  
r(n + k2 + m2) 

mSE - kS: 
q5(n+7(k2+m2)) 

T ( x ,  2, t )  = @, ent sin ( k x  + mz),  

sI(x, z ,  t )  = $, ent sin (kx + mz), 

where k = 1 cos B and m = 1 sin 8. Consequently perturbation fluxes of heat and salt 
in the horizontal and vertical directions are 

k(mPx - k q )  
2r (n  + k2 + m2) 

k(mS$ - kS,O) 
2&n+7(k2+m2))  

m(mPx - k q )  
2 r ( n  + k 2  + m2) 

m(mS$- kS:) 
2#(n+7(k2+m2))  

$: e2nt, 
F,, = (-& av = 

F,, = ( -zsI) a y  = 

F,, = (z5”’) iw = - 

F,, = (=AS”) av = - 

@: eZnt, 

@: eZnt, 

@: eZnt, 

(33) 

(34) 

(35) 

where () denotes spatial averaging over a wavelength. Notice that, on average, 
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diffusion does not contribute to perturbation fluxes of heat or salt. It can bc shown 
that (rl:FHT+ TF, , )  and (8: FH,+S~Fvs) are always ncgativc, which implies that 
overall the perturbation fluxes always tend to reduce thc basic-state concentration 
gradients. Also, thc ratio of heat flux to salt flux (FHT/PHS = Fk7T/Fv,s) is positive 
for all permissible unstable disturbances (Appendix D). 

M’hen slopes of isopropcrty lines are substantial. i.e. /Iix/liz~ = 0 ( 1 ) ,  then from 
( l l ) ,  (12) and (31) it is clear that 

As:/s,u = -tan (20,) ( 1  + 0 ( 7 $ ) : ) .  

The above equation may he used to derive the following relations for modes with 
8 z OD: 

12 cw 
(36) 

(37) 

where r = aq//3S:. From (1  1 )  and (12) it can be shown that tan 8,, and hence tan 
0,  are always negative. Consequently Fvs and F,,,s, corresponding to the peak 
growth rate, are negative too. The same conclusion applies to F,, and F,, 
(Appendix D). This implies that. so long as S;/S: = 0(1), ( r -  l)$/r < 1 and 
(dp/dz) < 0 the horizontal components of fluxes are always from higher to lower 
concentration, while vertical components of perturbation fluxes are always 
downwards. This includes the intuitively uncomfortable scenario of vertical fluxes 
pumping salt (heat) from fresher (colder) fluid above to saltier (hotter) fluid below! 
Dynamical considerations requirc that the fluid velocity, and temperature and 
salinity fluctuations each change their sign from layer to layer. Hence though the 
fluid moves in alternate directions. the directions of heat arid salt fluxes are limited 
to either being towards the third quadrant (the present case) or being towards the 
first quadrant (figure 3).  In the later case thc horizontal components of fluxes will 
always be against the basic-state horizontal gradients and, as will become clear later. 
will tend to increase the gravitational potential energy of the system. Obviously, the 
vertical flux component being always downwards is intuitively the more appealing 
of the two available alternatives. Putting np z 71% and I; = 0(1;(7$)1) in (36)-(38) it 
can be seen that for the most unstablc mode 

where - stands for equality within a factor of two or so. Obviously under typical 
conditions the perturbation salt flux is much stronger than the corresponding heat 
flux. By contrast in a Newtonian fluid, though salt is always transported more 
vigorously than heat, the flux ratio is of order one (Holyer 1983). Imhoff & Green 
(1988) obtained a flux ratio of order one in a porous medium using a sugar-salt 
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system. Though sugar and salt have different diffusivities, unlike heat and salt their 
advection rates through the porous medium are the same. Hence double-advective 
effects are absent in Imhoff & Green's experiment. Dynamically their experimental 
conditions are similar to double diffusion in a fluid. It is no surprise that their results 
are closer to Holyer's (1983) prediction than ours. 

When slopes of isoproperty lines are small, i.e. IR,/R,I 4 1, then for the salt 
fingering mode (i.e. R, > 0 )  with 8 x 8, the fluxes are 

@! e2nt, 
812s; 

F,, x - 
2 $ ( n + d 2 )  

where RJR, = 8 4 1 .  Notice that R, > 0 implies a q  > /lS; > 0. Hence as before 
both vertical and horizontal components of salt and heat fluxes are negative. For the 
interleaving mode (R, < 0) with 8 x 0, the fluxes are 

where RJR, = -8. Notice that R, < 0 implies /3S: < 0, hence Fvs, F V T ,  F,, and 
FHT are negative. Putting np x 71; and 1; = 0(1;(qb)i) in the above expressions for 
flux ratios one obtains 

which is the same as (41), which implies that though vertical components of heat and 
salt fluxes may be countergradient, together they always tend to decrease the 
gravitational potential energy of the fluid. 

The fact that vertical flux components are always downwards has important 
practical implications. For example pesticides or fertilizers (i.e. 'salt ') applied on 
saturated soil will set up a vertical 'salinity' gradient (S; > 0) in the subsurface. 
Either simple overturning (if dp/dx > 0) or salt fingers (if the vertical temperature 
gradient is such that dp/dz < 0) will transport the contaminant downwards. With 
only thermohaline mechanisms occurring the soil will tend to  accumulate all the 
contaminants at the bottom of the aquifer and never flush itself. 

6. Later stages of the instability 
Linear stability equations are valid only during the initial stages of the instability, 

i.e. for nt < O(1). As nt increases further, nonlinear terms of the governing equ&tions 
need to be taken into account. The full nonlinear governing equations include 

4 FLM 242 



92 A. Sarkar and 0. M .  Phillips 

J (Y,  !P') and J ( S ,  !P') on the left-hand sides of (3) and (4) respectively, where the 
Jacobian is defined by 

The vorticity equation, (2), remains unchanged. Interestingly, for sinusoidal 
solutions of the form of (29) to (31) the Jacobian terms are identically zero, which 
implies that  the linear solution ((29)-(31)) is also an exact solution of the nonlinear 
governing equations. The growth rate given by (7) also holds true for this solution. 
This theoretical property is also true for salt fingers (Huppert & Manins 1973) and 
horizontal interleaving (Holyer 1983) in Newtonian fluids. Unfortunately this 
solution does not take into account nonlinear interactions (through the Jacobian 
terms) between disturbances of different modes, and it does not provide any 
mechanism for the disturbances to evolve into steady states. Quite possibly this 
solution is not a realistic representation of the nonlinear evolution of disturbances. 

Experiments by Thorpe et al. (1969), Wirtz et al. (1972), Ruddick & Turner (1979), 
Holyer et al. (1987) and others suggest that in a fluid the double-diffusive horizontal 
tongues (i.e. disturbances for the case R, < 0 ) ,  do not suffer any qualitative changes 
in flow pattern during their nonlinear evolution. We expect the same to hold true in 
a porous medium. By contrast, in a fluid the salt-fingering mode (i.e. disturbances for 
the case R, > 0) may suffer secondary shear instabilities (Linden 1978). So long as the 
pore-scale Reynolds number is much smaller than one, flow in a porous medium is 
not expected to  suffer shear instabilities. Because of the reduced possibility of 
secondary instabilities, salt fingers in a porous medium, unlike those in a liquid, are 
expected to retain their qualitative flow features during the process of nonlinear 
evolution. The above experiments also suggest that, so long as mean gradients of 
temperature and salinity are maintained constant, thermohaline disturbances 
eventually develop a steady-state flow pattern. It is important to know whether the 
steady-state linear solution is representative of the steady state reached by the 
disturbances subsequent to nonlinear evolution. Equation (8) (also (10)) implies that 
the linear solution can admit of a steady state only when the vertical and horizontal 
Rayleigh numbers formed with the layer thickness as the lengthscale are of order 
one. By contrast (27) implies that the most unstable layer thickness is such that the 
corresponding Rayleigh numbers are of O(l/(qh);)  (9 1). So long as the basic state is 
held constant, i t  is quite unlikely that the thickness of a thermohaline layer would 
decrease by an order of magnitude through nonlinear interactions. Hence we believe 
that the steady-state linear solution is not a realistic representation of the steady 
state attained by disturbances. 

While an accurate theoretical description of the nonlinear evolution of disturbances 
and the probable final steady state is beyond the scope of the present paper, some 
order of magnitude estimates of steady-state disturbance quantities are in order. To 
this end we need to make some intuitively acceptable closure assumptions regarding 
the steady state. Firstly, we assume that at steady state the disturbance salinity 
gradient (IVs'l) is of the same order as the basic-state salinity gradient (IVSol). Since 
temperature fluctuations are always much smaller than the corresponding salinity 
fluctuations ((30) and (31)) we cannot make a corresponding assumption regarding 
the temperature field. Secondly, we assume that the thickness of steady-state salt 
fingers or horizontal interleaving is of the same order as that of the most unstable 
linear mode (equation (27)). Thirdly, we assume that the appropriate lengthscale (L,) 
characterizing spatial variation of the transport velocity is the thickness of the 
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thermohaline layer. Numerical analysis suggests this to be true for thermohaline 
layers in a Newtonian fluid (Wirtz et al. 1972) and for thermal convection in porous 
media (Trevisan & Bejan, 1987). Numerical and experimental studies of horizontal 
interleaving in fluids show that variations in the steady-state disturbance salinity 
field are typically limited to thin boundary layers (Wirtz et al. 1972). This is also true 
of high-Rayleigh-number thermal convection in porous media (Trevisan & Bejan 
1987). Since Rayleigh numbers, based on the layer thickness, of the most unstable 
disturbances are larger than one (0(1/(~4);), our fourth assumption is that the 
lengthscale (L,) characterizing spatial variations of the disturbance salinity field is 
much smaller than the layer thickness L,. 

Mathematically the above approximations are represented as 

IVs'I - lVSOl, (44) 

where a prime denotes disturbance quantities, Lu is the velocity lengthscale, L, is the 
salinity length scale, K is the hydraulic conductivity, k, is the effective thermal 
diffusivity of the saturated medium, and - denotes order of magnitude equality. 
Equation (45) is obtained from (27), assuming RJR, and ac/pS! are of order one. 
The vorticity and the steady-state salt conservation equations yield the following 
relations : 

U 
--KKpvs', 
LU 

vs' 
$VSo - 7k,--, 

L S  

where U is the magnitude of the transport velocity. 

U - (74)f(Kk,flXo)~, 

L ,  - (74)fL,. 

(47) 

Solving (44)-(48) one obtains 

(49) 

(50) 

Equations (44)-(50) are in the dimensional form. Equations (49) and (50) are valid 
under the same conditions as (26)-(28). For a water-saturated medium with 
k, = 1 darcy, 74 = 0.005, pVXO = 1 % per 10 m, the right-hand side of (49) is 
approximately 25 cm/yr. For geological purposes this is a significant rate of 
transport. We expect that at the steady state IaVT'I 4 IKpvSl, hence thermal 
contributions are neglected in (47) and (49). Estimating aVT and the thermal 
lengthscale requires one additional closure assumption and the heat balance 
equation. Several alternative closure assumptions are possible, but we could not 
identify any one of them as being clearly superior to the others, so that we refrain 
from further discussion about the steady-state disturbance temperature field. 

From (45) and (49) one may obtain an estimate of the steady-state salt flux per 
unit area as 

F ,  - ULs VSo - q5(7kg) VSO. (51) 

The above equation implies that the salt flux is linearly proportional to the basic- 
state concentration gradient. Thermal convection experiments in porous media do 
show this linear relationship (Elder 1967; Murray & Chen 1989). No data are 

4-2 
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available for the thermohaline case. Equation (51) also implies that the salt flux 
due to double-diffusive instabilities is of the same order as that due to molecular 
diffusion (recall that  T k ,  is the effective diffusivity of salt in the interstitial liquid). 
Numerical calculations by Wirtz et al. (1972) showed that in a Newtonian fluid the 
heat flux due to double-diffusive horizontal interleaving was indeed of the same order 
(though larger) as that  of pure conduction. 

Since we are treating the porous medium as a continuum i t  is important that the 
smallest lengthscale of the problem, L,, be much larger than the r.m.s. grain size 8. 
Using the fact that  the permeability k ,  is of order lop2 $8 (Phillips 1991 ; $2.7) and 
(50) it can be shown that L,  9 8 if 

R, + 100(~$)f, (52) 

where R,( = gpVSo#/Tk,  v) is the pore-scale Rayleigh number. The right-hand side of 
(52) is typically of order one. The above condition apparently implies that so long as 
the grain size is small enough to exclude the possibility of pore-scale thermohaline 
instabilities, the continuum approximation should hold. In a porous medium 
mechanical dispersion tends to  increase the effective diffusivity of advectively 
transported salt. The increase in effective diffusivity is of the order U6/# (Phillips 
1991 ; $2.3). It can be shown that so long as (52) is true mechanical dispersion effects 
are negligible, i.e. U8/q5 + rk,. Apparently thermohaline convection never becomes 
strong enough for mechanical dispersion to become important. This is the reason why 
mechanical dispersive effects were neglected in the steady-state salt balance equation 
(48). From (49) one obtains an estimate of the pore-scale Reynolds number : 

where Re, = U&/$v, and Pr( = v /k , )  is the Prandtl number. It is clear that so long as 
(52) is satisfied, Re, is much smaller than 1. This justifies using Darcy's law to 
represent momentum balance, and neglecting the possibility of any shear instability. 

7. Summary 
We have examined the consequences of the presence of horizontal concentration 

gradients on characteristics of thermohaline instabilities in a saturated homogeneous 
isotropic infinite porous medium, using the techniques of linear stability analysis. In  
the basic state horizontal gradients of temperature and salinity are taken to be 
mutually compensating, so that the basic-state fluid density does not vary 
horizontally. The fluid density is assumed not to increase with height (i.e. dpldz < 0). 
The fluid is assumed to be incompressible (Boussinesq approximation). For a medium 
of infinite extent the appropriate length- and timescales are given by k,/K and k , / P  
respectively ($2). Squire's theorem is found to hold (Appendix A); hence we consider 
only two-dimensional disturbances (equation (6)). The problem is governed by five 
non-dimensional parameters : W,, W,, R,, R, and 7 (equation (5)). In  the presence of 
horizontal property gradients (ix. when W,, R, =+ 0 )  the situation is always unstable. 
In  the absence of horizontal gradients the configuration is unstable only if the 
vertical Rayleigh number (R,) is positive (equation (8)).  It is also found that all 
oscillatory disturbances are damped, which implies that ' overstability ' is not 
possible in the present case ($2). The largest unstable wavenumber (i.e. the smallest 
unstable lengthscale) is given by (lo), and its orientation is given by ( 1  1) and (12). 
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In general the range of values of unstable wavenumber ( 1 )  and its orientation (0)  
increase with increase in values of W,, W,, R, and R, (figure 1).  

In $3  we show that the basic mechanism of the present instability is non-diffusive 
in nature. In a porous medium, assuming the solid matrix to be impervious to 
dissolved salts, the effective advection rates of heat and dissolved salts are different 
((3) and (4)). Because of this difference any disturbance involving a horizontal 
component of displacement creates net horizontal density gradients, and thus 
destabilizes the predominantly hydrostatic force balance (equation (17)) .  This 
double-adwectiwe instability is similar to, but different from the double-diflusive 
instability observed in fluids. Though the double-advective effects are predomi- 
nant, for disturbances of a certain lengthscale the double-diffusive effects do 
destabilize the situation even further. Hence the most unstable lengthscales (( 19) and 
(27)) are determined by double-diffusive effects, double-advective effects being 
independent of the lengthscale (equation (13)). On the other hand the most unstable 
orientation of a disturbance wavenumber vector is determined almost exclusively by 
double-advective effects (equation (22)). We find that the most likely directions of 
fluid motion are limited to the first and third quadrants (where the positive z-axis 
points vertically upwards, and the basic-state temperature and salinity con- 
centration increase to the right (figure 3)). When R, > 0 the typical disturbance 
velocity field consists of almost vertical layers of fluid sliding past each other in 
opposite directions, i.e. salt Jingers. When the vertical Rayleigh number is negative 
the fluid layers are almost horizontal, similar to the interleaving (or ‘tongues’) 
observed by Thorpe et al. (1969) and others ($4). 

The ratio of heat flux to salt flux is positive for all permissible unstable 
disturbances (Appendix D), though typically the salt flux is much stronger than the 
corresponding heat flux (equation (41)). Regardless of the sign and magnitude of 
vertical concentration gradients the vertical flux components are always downwards. 
This result has practical implications in terms of ‘irreversible ’ collection of pollutants 
at  the bottom of aquifers. The perturbation fluxes always tend to reduce the basic- 
state concentration gradients, and the gravitational potential energy of the fluid. In 
$6 we make some tentative estimates regarding properties of these instabilities at the 
fully evolved state. Of particular interest are the estimates of the transport velocity, 
(49), and salt flux, (51). We find that under typical conditions (equation (62)) the 
pore-scale Reynolds number remains much smaller than 1 (equation (53)), and effects 
of mechanical dispersion remains negligible. 

Appendix A. Squire’s theorem 
Combining Darcy’s law with the incompressibility condition and the equation of 

state one obtains 

In the above equation the pressure is non-dimensionalized by ,uk,/k,, where ,u is the 
dynamic viscosity of the fluid. The equations for conservation of heat and salt are 
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We assume the disturbances to be of the form 
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(p',  T ,  S') = (po ,  to,  so) exp [nt + i(k cos wz + k sin wy + rnz)], (A 4) 

where w is the angle between the horizontal component of the wavenumber vector 
and the direction of maximum thermohaline gradients (x-direction). In the notation 
of $2, k = l c o s e ,  m = Esine. Substituting (A 4) in (A 1)-(A 3) yields 

iE[m( cos wTO,) - kT,O] 
to = Po rm(n+ k2 + m2) 

ik[rn( cos as;) - ES,O] 
so = 

$m(n + 7(k2 +rn2)) 

n2 +n[( 1 + 7) l2  -a( W, (cos 20+ 1) - ( W, cos a) sin M)] 

+ ~ * - - ( ( R , ( C O S ~ ~ + ~ ) - ( R , C O S W ) S ~ ~ ~ ~ )  = 0. (A 7)  [ :  1 
Comparing (A 5), (A 6) and (A 7)  to (7),  (32) and (33) it is clear that the dynamics of 
three-dimensional disturbances like (A 4) is identical to that of a two-dimensional 
disturbance with the strengths of horizontal gradients scaled down by a factor of 
cosm. Although we have not provided any formal proof that the growth rate 
monotonically increases with increase in J?S~( = UP,) for all possible two-dimensional 
disturbances, from (14) and (28) i t  is clear that  so is the case for the most unstable 
modes. 

Appendix B. Mode-dependent stability boundary 
For a quadratic equation of the form 

n2+bn+c = 0 
the two roots are given by 

n, = q, n2 = c/q, where q = - $[b + sgn ( b )  (b2 - 4c)tl. (B 2) 

c 3 0. (B 3) 

If both n, and n2 are to  be non-positive then we need Re(q) < 0. From the definition 
of q it is clear that Re(q) < 0 only if 

For (7),  conditions (B 3) and (B 4) imply 

If both n, and n2 are to be of the same sign (e.g. 60) then we need 

b 2 0. (B 4) 

l2-~(R,(cos20+ 1)-RZsin2O) 2 0, (B5) 

Z2(l+~)-$(W,(cos28+l) -WW,~in28)  2 0. (B6) 

Equations (B 5 )  and (B 6) are equivalent to (8) and (9) respectively 

Appendix C. Decaying nature of oscillatory modes 

necessary that c > 0,  which for (7)  implies 
For a quadratic equation of the form n2+bn+c = 0 to  have complex roots it is 

,uR, 2 R,- k2(1 +,u~)~,  (C 1) 
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where y = tan 8. From the discussion of Appendix B it is clear that real parts of both 
the roots of the quadratic equation will be negative only if b > 0 (in addition to 
c > 0), i.e. 

A proof that (C 1 )  necessarily implies (C 2) will mean that all oscillatory modes decay 
with time. It can be shown that 

pw, 2 Wz-k2(1+7)(l+p2)2. (C 2) 

70 -$lo - dp/dz (1 - 7 )  ' - Rz ( 1 - 7 $ / 0  - r( 1 - 7 $ / 0  ' 

Using (C 3) and (C 4), (C 1) can be recast in the form 

If (dp/dz)( l -~) / [p, ,r( l -~$/r)]  < 0 and 0 < ~( l -$ /q / ( i -~$/Q < (1+7) the 
above inequality implies 

Hence satisfaction of (C 1)  necessarily implies satisfaction of (C 2). 

,%w, > Wz-k2(1+7) (l+p2)2. 

Appendix D. Sign of the flux ratio 
From (32)-(35) one obtains 

It is obvious that for any unstable mode the factor within the square brackets on the 
right-hand size of (D 1) is positive. I n  addition dpldz < 0 implies 

PS: < ac. (D 2) 
Equation (8) implies that for any unstable mode 

where y = tan8;  also recall that PS: = aPz 2 0. 
Case 1 :  y > 0. From (D 2) and (D 3) one obtains 0 < /3S; < u q ,  also yP, /q  < 

yS:/S! < 1 ; that is both the denominator and the numerator within the braces in 
(D 1) are negative, hence the flux ratio is positive. 

Case 2:  y < 0 and PS: > 0. Obviously ,uS$/S,O < 0, and from (D 2) one obtains 
aq /PS;  > 0 and yP, /q  < 0. Hence both the numerator and the denominator 
within the braces in (D 1) are negative, i.e. the flux ratio is positive. 

Case 3:  y ,  /?S:, a q  < 0. Equation (D 2) implies Iaql < IPS:l, and (D 3) implies 
yS$/S: > 1. Hence 1 < yS:/S: < ,uPz/~.  That is both the numerator and the 
denominator within the braces in (D 1) are positive, hence the flux ratio is positive. 

Case 4 :  y ,  PS: < 0 and a q  > 0. As in case 3, ySg/S: > 1, hence the denominator 
within the braces is positive. By contrast yP,/G < 0, hence the numerator and the 
factor within the braces are negative. The fact that  uc/,l3S: is negative makes the 
flux ratio positive. 
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Cases 1 to 4 together cover all possible combinations. This also implies that for 
unstable modes temperature and salinity perturbations are always in phase. 
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